The Amino Acid Transporter JhI-21 Coevolves with Glutamate Receptors, Impacts NMJ Physiology, and Influences Locomotor Activity in Drosophila Larvae

نویسندگان

  • Anna B. Ziegler
  • Hrvoje Augustin
  • Nathan L. Clark
  • Martine Berthelot-Grosjean
  • Mégane M. Simonnet
  • Joern R. Steinert
  • Flore Geillon
  • Gérard Manière
  • David E. Featherstone
  • Yael Grosjean
چکیده

Changes in synaptic physiology underlie neuronal network plasticity and behavioral phenomena, which are adjusted during development. The Drosophila larval glutamatergic neuromuscular junction (NMJ) represents a powerful synaptic model to investigate factors impacting these processes. Amino acids such as glutamate have been shown to regulate Drosophila NMJ physiology by modulating the clustering of postsynaptic glutamate receptors and thereby regulating the strength of signal transmission from the motor neuron to the muscle cell. To identify amino acid transporters impacting glutmatergic signal transmission, we used Evolutionary Rate Covariation (ERC), a recently developed bioinformatic tool. Our screen identified ten proteins co-evolving with NMJ glutamate receptors. We selected one candidate transporter, the SLC7 (Solute Carrier) transporter family member JhI-21 (Juvenile hormone Inducible-21), which is expressed in Drosophila larval motor neurons. We show that JhI-21 suppresses postsynaptic muscle glutamate receptor abundance, and that JhI-21 expression in motor neurons regulates larval crawling behavior in a developmental stage-specific manner.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Long-term in vitro maintenance of neuromuscular junction activity of Drosophila larvae.

The larval Drosophila neuromuscular junction (NMJ) has proven to be an excellent system to test fundamental aspects of synaptic transmission, such as relationships among ion channel function, subtypes of glutamate receptors, and the functions of synaptic proteins in the presynaptic compartment. Recent advances in understanding bi-directional communication between nerves and muscles of Drosophil...

متن کامل

The physiological and behavioral effects of carbon dioxide on Drosophila melanogaster larvae.

Adult and larval insects are rapidly anesthetized by carbon dioxide (CO2); however, the mechanisms have not been addressed. In this study, we use larval Drosophila to investigate the actions of CO2 to explain the behavioral effects of rapid immobilization and cardiac arrest with acute exposure to CO2. To determine if the central nervous system (CNS) is required, studies were performed with and ...

متن کامل

Cloning and characterization of a Drosophila melanogaster cDNA encoding a glutamate transporter.

A Drosophila cDNA encoding a glutamate transporter was cloned and examined. The predicted protein (479 amino acid residues) shows significant sequence identity with mammalian counterparts. The protein expressed in Xenopus oocytes had a glutamate transport activity. Northern blot analysis showed that the transcript increased in amount developmentally. This expression pattern is different from th...

متن کامل

Drosophila glial glutamate transporter Eaat1 is regulated by fringe-mediated notch signaling and is essential for larval locomotion.

In the mammalian CNS, glial cells expressing excitatory amino acid transporters (EAATs) tightly regulate extracellular glutamate levels to control neurotransmission and protect neurons from excitotoxic damage. Dysregulated EAAT expression is associated with several CNS pathologies in humans, yet mechanisms of EAAT regulation and the importance of glutamate transport for CNS development and func...

متن کامل

P24: The Role of Ionotropic Glutamate Receptors in the Induction of LTP

Long-term potentiation (LTP) is a reflection of synaptic plasticity that has an important role in learning and memory. LTP is a long-lasting increase of synaptic activity due to enhancement of excitatory synaptic transmission after a high-frequency train of electrical stimulation. The role of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in excitatory synaptic tran...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016